Signaling mechanisms of HAMP domains in chemoreceptors and sensor kinases.

نویسنده

  • John S Parkinson
چکیده

HAMP domains mediate input-output signaling in histidine kinases, adenylyl cyclases, methyl-accepting chemotaxis proteins, and some phosphatases. HAMP subunits have two 16-residue amphiphilic helices (AS1, AS2) joined by a 14- to 15-residue connector segment. Two alternative HAMP structures in these homodimeric signaling proteins have been described: HAMP(A), a tightly packed, parallel, four-helix bundle; and HAMP(B), a more loosely packed bundle with an altered AS2/AS2' packing arrangement. Stimulus-induced conformational changes probably modulate HAMP signaling by shifting the relative stabilities of these opposing structural states. Changes in AS2/AS2' packing, in turn, modulate output signals by altering structural interactions between output helices through heptad repeat stutters that produce packing phase clashes. Output helices that are too tightly or too loosely packed most likely produce kinase-off output states, whereas kinase-on states require an intermediate range of HAMP stabilities and dynamic behaviors. A three-state, dynamic bundle signaling model best accounts for the signaling properties of chemoreceptor mutants and may apply to other transducers as well.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phenol sensing by Escherichia coli chemoreceptors: a nonclassical mechanism.

The four transmembrane chemoreceptors of Escherichia coli sense phenol as either an attractant (Tar) or a repellent (Tap, Trg, and Tsr). In this study, we investigated the Tar determinants that mediate its attractant response to phenol and the Tsr determinants that mediate its repellent response to phenol. Tar molecules with lesions in the aspartate-binding pocket of the periplasmic domain, wit...

متن کامل

HAMP Domain Rotation and Tilting Movements Associated with Signal Transduction in the PhoQ Sensor Kinase

UNLABELLED HAMP domains are α-helical coiled coils that often transduce signals from extracytoplasmic sensing domains to cytoplasmic domains. Limited structural information has resulted in hypotheses that specific HAMP helix movement changes downstream enzymatic activity. These hypotheses were tested by mutagenesis and cysteine cross-linking analysis of the PhoQ histidine kinase, essential for ...

متن کامل

Role of HAMP domains in chemotaxis signaling by bacterial chemoreceptors.

Bacterial chemoreceptors undergo conformational changes in response to variations in the concentration of extracellular ligands. These changes in chemoreceptor structure initiate a series of signaling events that ultimately result in regulation of rotation of the flagellar motor. Here we have used cryo-electron tomography combined with 3D averaging to determine the in situ structure of chemorec...

متن کامل

Mechanism of transmembrane signaling by sensor histidine kinases.

One of the major and essential classes of transmembrane (TM) receptors, present in all domains of life, is sensor histidine kinases, parts of two-component signaling systems (TCSs). The structural mechanisms of TM signaling by these sensors are poorly understood. We present crystal structures of the periplasmic sensor domain, the TM domain, and the cytoplasmic HAMP domain of the Escherichia col...

متن کامل

HAMP Domain Conformers That Propagate Opposite Signals in Bacterial Chemoreceptors

HAMP domains are signal relay modules in >26,000 receptors of bacteria, eukaryotes, and archaea that mediate processes involved in chemotaxis, pathogenesis, and biofilm formation. We identify two HAMP conformations distinguished by a four- to two-helix packing transition at the C-termini that send opposing signals in bacterial chemoreceptors. Crystal structures of signal-locked mutants establis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Annual review of microbiology

دوره 64  شماره 

صفحات  -

تاریخ انتشار 2010